Gas Stoves and Indoor Air Quality – Fresh Air on a Hot Topic

by Sandhya Sethuraman and Maria A. di Landro

gas stove
Emissions from gas stoves cause poor indoor air quality and health problems

Urged by scientists’ findings on the links between gas stove use and their contribution to indoor pollution and increased risk of respiratory illnesses, the CPSC (Consumer Product Safety Commission) has recently begun to consider a ban on gas stoves. More than 40 million U.S. households rely on gas stoves to cook with, but many are not aware of their negative impacts on indoor air quality and climate: natural gas appliances release nitrogen oxides, particulate matter, formaldehyde, and carbon dioxide into the air, and they can leak methane, even when not in use. Higher indoor pollution levels, as a consequence of gas stove emissions, can have various respiratory impacts, including asthma, coughing, wheezing, and difficulty breathing. In this article, we provide more details on what academic research has found, including the estimated fraction of current childhood asthma associated with gas-stove use in each state. We also discuss how various states are already taking initiative and are working to move away from new gas stove installation. Using New York as a case study, this article describes their new bill that effectively bans the use of gas stoves in the construction of new buildings starting in 2024 and what the response from the public has been. In the meantime, there are various measures the public can take to protect themselves from gas stove emissions.

What’s the controversy?

A torrent of information, data, and dissent followed the initial CPSC announcement — scientists urged reform while political parties made the debate about consumers’ freedoms. To make some sense of the dialog: 

  • In December, Senator Cory Booker (D-NY) and Representative Don Beyer (D-VA) published a report strongly urging the CPSC to consider a ban on gas stoves. They argued that gas stoves emit high levels of pollutants like nitrogen dioxide (NO2), carbon monoxide (CO) and fine particulate matter (PM2.5). 
  • Amid debates surrounding gas stoves, consultants with ties to the American Gas Association have criticized research which linked gas stoves to childhood asthma.
  • Voices on the right have argued that removing gas stoves from homes is an infringement on their basic rights. Senators Cruz and Manchin introduced legislation in early February to bar the CPSC from using federal funding to ban gas stoves, arguing that it “constitutes government overreach.” 
  • The American Gas Association also pushed back against the ban, arguing that housing would become more expensive as “electric homes require expensive retrofits.”

The resulting debate became clear: ban gas stoves in future buildings and transition to electric stoves instead, or continue as we always have? 

What’s happening right now? (NYC Case Study)

Currently, over 70 percent of greenhouse gas emissions in New York City comes from indoor air pollution in homes, but changing the internal piping and structures of old New York City buildings (retrofitting) is nearly impossible. Because many buildings went up before 1930, ripping out the existing infrastructure and effectively transitioning to more efficient and sustainable energy has proven to be a daunting task. 

In December 2021, New York’s City Council voted to ban the use of fossil fuels — and by extension gas stoves — altogether in new buildings. This law was scheduled to go into effect this year for structures shorter than seven-stories tall and in 2027 for all buildings. As of late, the council has asserted that co-ops and condominiums — newer, more modern buildings — are poised to make a difference in the short term if they make the necessary electrical upgrades and incentivize resident collaboration. 

Why gas stoves?

Simply put, gas stoves have gained attention because of how ubiquitous they are. Over one third of U.S. households — more than 40 million homes — cook with gas stoves. Natural gas appliances generate carbon dioxide, particulate matter, formaldehyde, and nitrogen oxides when natural gas is burned as a fuel, and leak methane into the air, often even when they are not in use. 

According to researchers at Stanford, gas stoves themselves have the same climate impact as about 500,000 gasoline-powered cars. Current EPA estimates are incomplete themselves, failing to account for the reality of gas pipelines (which leak much more than reported), and usually not including leakage within buildings at all. 

Additionally, the health impacts of having stoves in such close proximity to residents is well-understood. Because they are often central to homes, the respiratory impacts of pollutants — like asthma, coughing, wheezing and difficulty breathing — are often difficult to control and treat. People interact directly with their stoves (more so than other gas appliances), and the constant exposure to formaldehyde, carbon dioxide, nitrogen oxides, and methane can have long term health effects. 

The impacts of gas stoves are not equal either. As emphasized by Booker and Beyer, gas stoves have a larger impact on Black, Latino and low income households, who experience the “cumulative burden” of gas stove emissions and broader air quality impacts every day. In the global south, poor ventilation and living conditions mean that women and children are also disproportionately affected by indoor household emissions. 

What does the academic research say?

The push to “go electric” is backed by science, as the harmful byproducts of combustion are often emitted directly into the air indoors without proper ventilation systems in place. Indoor gas stove cooking is clearly connected to respiratory illness, and more than 12% of childhood asthma cases in the U.S. can be linked to gas stoves. 

A few key results: 

  • State-by-state differences in pollution levels from gas stoves, and therefore impacts, are correlated with their prevalence in the household, which means that a one-size-fits-all solution via blanket legislation is likely to fail. For example, Illinois experiences the highest childhood asthma burden from gas stoves (21.1%), followed by California (20.1%), New York (18.8%), Massachusetts (15.4%), and Pennsylvania (13.5%). Florida, where the demand for gas stoves is low, has the lowest burden (3%) (U.S. Energy Information Administration, via CNN).
  • There are existing benchmarks for “unsafe” pollution and residential exposure limits. For instance, Canada has a maximum residential exposure limit of 90 parts per billion (ppb) over an hour of exposure, and 11 ppb in the long term (> 24 hours) for NO2.
  • Gas stoves contribute different amounts of methane to the atmosphere based on when and how they are being used. A recent study published in Environmental Science & Technology found that 76% of the total methane emissions from stoves come from the steady-state off state (indicating significant leakage). 
Population attributable fraction of current childhood asthma associated with gas stove use in the U.S. From Gruenwald et al., Int. J. Environ. Res. Public Health 202320(1), 75; https://doi.org/10.3390/ijerph20010075

What can you do?

  • Ventilate: exhaust streams are necessary in any kitchen; turning on a fan or opening a window is a good way to mitigate some of the negative effects of cooking on a gas stove. Many range exhausts don’t vent to the outside, but rather recirculate stove emissions back into the kitchen. Ventilation to the outside can greatly improve indoor air quality.  
  • Educate: launch education campaigns to better understand the risks associated with gas stoves, and how these can be minimized, especially for disadvantaged groups. 
  • Advocate: push for gas stoves to be sold with range hoods that meet mandatory performance standards, and for ventilation to the outdoors instead of recirculation. Additionally, gas stoves should be equipped with leak proof valves, which can be shut on and off to prevent methane exposure. 

Recurso recomendado: US EPA serie de videos “Sensores de Aire”

La U.S. EPA ha creado una serie de videos sobre la calidad del aire, el salud, y los sensores del aire. Los videos están disponibles en español e inglés aquí (pagina en inglés): https://www.epa.gov/air-sensor-toolbox/videos-air-sensor-measurements-data-quality-and-interpretation .

Los sensores del aire son muy comunes hoy en día. Miles de estos dispositivos están en uso, pero hay muchas preguntas sobre cómo interpretar y comunicar los datos. Estos videos ofrecen información para responder a preguntas comunes sobre estos sensores.

Los Videos:

SENSORES DE AIRE

MEDIDAS Y SU SALUD

FUENTES DE INFORMACIÓN SOBRE LA CALIDAD DEL AIRE

Clean Air Toolbox Initiative: Luchando contra la contaminación del aire

Más de 20 investigadores de Columbia University han formado un grupo collaborativo, que se llama el “Clean Air Toolbox Initiative.” Ese grupo usa las herramientas de ciencias atmosféricas, ciencias de datos, salud pública, la ley, y más para luchar contra la contaminación del aire en ciudades por el Sur Global. Ellos están trabajando in ciudades de África y India para demonstrar su métodos. Para obtener más información, visite aqtoolbox.org y sígalos en Twitter (@aqtoolbox).

HOMEChem: Investigando la contaminación del aire en ambientes interiores

Equipo para medir materia particulada en la cocina de la casa modelo de HOMEChem. Autora de la foto: Marina Vance (@marinavance)

Aunque generalmente buscamos fuera de casa cuando pensamos en la contaminación del aire peligrosa, en realidad la gente hoy en día pasan la gran mayoria de su tiempo en interiores. Los ambientes interiores presentan fuentes únicas de contaminación y muchas oportunidades para la exposición humana. Las actividades como cocinar, limpiar, fumar, o incluso las emisiones pasivas de los materiales de construcción y los muebles, pueden provocar una mala calidad del aire interior. Sin embargo, históricamente, se ha realizado muy poca investigación sobre la contaminación del aire en ambientes interiores, a diferencia del aire libre.

Durante todo el mes de junio de 2018, un grupo de científicos e ingenieros se reunió para el estudio de investigación de la contaminación del aire interior más grande en la historia, que se llama HOMEChem (House Observations of Microbial and Environmental Chemistry). Más que 15 grupos de investigación de 13 universidades trabajaron juntos en este proyecto. Los líderes del estudio son la Prof. Marina Vance, ingeniera ambiental de CU Boulder, y la Prof. Delphine Farmer, química atmosférica de Colorado State University. El proyecto fue financiado por el programa de química de ambientes interiores de la fundación Alfred P. Sloan.

HOMEChem fue una serie de experimentos en una casa modelo (UTest house) en la Universidad de Texas en Austin. Los científicos simularon actividades cotidianas como cocinar, bañarse, y limpiar la casa, mientras midieron la composición del aire. El punto culminante del experimento fue su simulacro del Día de Acción de Gracias. En este día de calor en junio, prepararon una comida completa de Acción de Gracias y simularon las condiciones del aire interior de una celebración familiar en casa.

Ahora que se están analizando los datos de HOMEChem, aparecen resultados sorprendentes y emocionantes. Anticipamos que este trabajo hará una marca indeleble en el campo de estudio de la química del aire interior. Para seguir la historia a medida que se desarrolla, sigue a @IndoorChem y busca #HOMEChem en Twitter!

ICYMI: India’s Air Pollution Crisis, By the Numbers

In this article, published in October 2017 on HuffPost India, Prof. McNeill and Dr. Julia Nunes break down the data for particulate air pollution in cities across India. Air pollution is at an unhealthy level for a large part of the year, in most Indian cities.

The pie charts show the number of days in the past year that the average PM2.5 level fell into the following three categories: Green days (PM2.5 < 35.4 μg m-3) are healthy or moderate, yellow days (35.5 μg m-3 to 55.4 μg m-3) are unhealthy for sensitive groups such as children, the elderly or those with lung disease, and red days (PM2.5 > 55.5 μg m-3) are unhealthy for all. For more information on the data sources: https://aire.mcneill-lab.org/india-aq-2016-2017/

 

How to protect yourself and your family from air pollution

This article was written by Prof. V. Faye McNeill and her colleague, Dr. Julia Nunes. It gives details on ways to protect yourself and your family from the effects of air pollution. It is the first in a set of articles. The next article in the series will break down air pollution data from across India, demonstrating that most Indians are exposed to unhealthy air for much of the year.

http://m.huffingtonpost.in/amp/dr-julia-k-nunes/no-you-do-not-become-immune-to-air-pollution-yes-it-can-kill-you_a_23241219/

Image: Smog in the Delhi/NCR area. Photo credit: Jesse Rabek.

 

Recurso Recomendado: @SmokeySpanish

Smokey es un programa que le brinda información de la calidad de aire de acceso rápido para su lugar. Simplemente Twittea el nombre de su ciudad a @SmokeySpanish y usted recibirá una respuesta en cuestión de segundos con el inidico de la calidad del aire y unos detalles como los niveles del PM2.5 y el ozono. Esta información puede ayudarle a planear sus actividades diarias.

Smokey fue creado por Amrit Sharma (@Amrit_Sharma) y usa datos del openaq.org (@openaq).

Twitteando a @SmokeySpanish

Los detalles del AQ

 

Día Mundial del Asma: “Mi hija tiene asma. ¿De qué manera la contaminación del aire afecta a su salud?”

Pregunta: Mi hija tiene asma. ¿De qué manera la contaminación del aire afecta a su salud? – M.N., New York, NY

Respuesta: Las personas asmáticas son muy sensibles a los efectos de la contaminación del aire. Al respirar el aire contaminado, esto puede desencadenar o empeorar los síntomas del asma.  El ĺndice de Calidad del Aire (AQI) es una medida que nos dice que tan ‘saludable’ es el estado actual del aire que respiramos. El AQI se calcula por los niveles de unas sustancias presentes en el aire, las cuales pueden afectar la salud humana, por ejemplo el ozono y la materia particulada. Un nivel AQI sobre 101 no es saludable para la gente asmática, mientras que para los adultos con un buen estado de salud y sin asma, un nivel de AQI sobre 151 no es saludable.

La Prof. McNeill también tiene asma y en los días con alto AQI, ella no se siente bien y usa más el inhalador. Cuando ella estudiaba en la universidad Caltech, cerca de Los Angeles, la calidad del aire fue muy mala, peor que hoy, y esto la motivó a estudiar la química atmosférica.

Este post apareció por primera vez en este sitio el 4 de Octubre de 2014. Estamos respostandolo porque hoy es el Día Mundial del Asma 2017 

 

Air Pollution and World Asthma Day

World Asthma Day reminds us at the AIRE team why we care about clean air. Air pollution is a trigger for asthma. According to the 2017 HEI State of Global Air report, most people on Earth are living with PM2.5 concentrations which the US EPA has labeled as “Unhealthy for Sensitive Groups,” which includes people with asthma. Air Quality has improved enormously in the US, to the benefit of asthmatics and everyone else, since the passing of the Clean Air Act of 1970. The improvements in US air quality are even visible from space. However, India, China, UK, and other nations worldwide are currently facing air quality crises. Cleaning up the air in order to protect public health, while at the same time meeting climate goals, will require a combination of technical insight, policy innovation, and political will.

Live reporting from Beijing: Air Quality in Crisis

V. Faye McNeill, Beijing, China, December 21, 2016

Haze over central Beijing, 12/20/2016. Photo credit: V. F. McNeill

Much of China, including the capital city, Beijing, is experiencing sustained heavy smog this week, with air pollution at hazardous levels for the past three days. Concentrations of fine particulate matter in Beijing’s air today exceeded 400 ug/m3, more than ten times China’s National Ambient Air Quality Standard (35 ug/m3). The episode has caused an increase in hospitalizations and disruptions in air traffic due to poor visibility. The government has declared a “red alert” and taken emergency measures including industrial shutdowns, odd-even traffic restrictions, and school cancellations to protect public health.

“I love Beijing.  I grew up here and spent my whole life here.  If it weren’t for the air pollution, I would love living here.  But now I think about leaving. Many people are leaving.”

Reduced visibility at Beijing’s airport. 12/20/2016 Photo credit: V.F. McNeill

Air quality is an ongoing issue in Beijing, and a major subject of concern for its residents. As one Beijing native told me: “I love Beijing.  I grew up here and spent my whole life here.  If it weren’t for the air pollution, I would love living here.  But now I think about leaving. Many people are leaving.” According to the U.S. Embassy, between 2008-2015, the daily average air quality index in Beijing fell in the “Unhealthy,” “Very Unhealthy,” or “Hazardous” categories 67% of the time. A severe air quality episode in January 2013 was somewhat of a turning point, leading to increased pressure on the government to tighten regulations. One outcome was the amendment of the national ambient air quality standards. Meeting the new standards for PM2.5 would be a major step towards protecting public health. But, as episodes like this one show, improvement is slow to come. Plans for local implementation and enforcement of the new air quality standards are still in the development stages. In some cases major changes in infrastructure are needed in order to reduce emissions, and this can take time. Local efforts alone won’t be enough: The city of Beijing has made bold moves towards eliminating coal burning within the city, but much of Beijing’s pollution comes from upwind sources, outside the city limits.

With the will of government and the people aligned, China is poised to turn around its air pollution problem. Unlike the U.S., which greatly improved its air quality in the last century and now must tackle climate, China is in a position to develop smart new policies and technology to improve air quality and reduce carbon emissions simultaneously.